>

3D打印实现轻量化的四种途径

- 编辑:大奖网官网登录-大奖官方娱乐网站 -

3D打印实现轻量化的四种途径

轻量化结构的优势其实不难理解,以汽车为例,重量轻了,可以带来更好的操控性,发动机输出的动力能够产生更高的加速度。由于车辆轻,起步时加速性能更好,刹车时的制动距离更短。以飞机为例,重量变轻了则可以提高燃油效率和载重量。

中国德富塑料网讯:7月12日-13日,“2018中国汽车轻量化产业高峰论坛”在上海隆重举行,论坛以“新技术、新材料、新工艺“为主题,旨在降低汽车自身重量同时提高输出功率、降低噪声、提升操控性和安全性,并对汽车轻量化政策趋势发展、整车轻量化平台化设计方案、关键零部件轻量化技术开发及汽车轻量化多材料应用及成本控制分析等问题展开探讨。

要实现轻量化,宏观层面上可以通过采用轻质材料,如钛合金、铝合金、镁合金、陶瓷、塑料、玻璃纤维或碳纤维复合材料等材料来达到目的。微观层面上可以通过采用高强度结构钢这样的材料使零件设计得更紧凑和小型化,有助于轻量化。

3DSystems大中华区售前与应用经理邓瀚诚具体介绍了3D打印技术在轻量化设计当中的应用,详见演讲实录:

而3D打印带来了通过结构设计层面上达到轻量化的可行性。具体来说,3D打印通过结构设计层面实现轻量化的主要途径有四种:中空夹层/薄壁加筋结构、镂空点阵结构、一体化结构实现、异形拓扑优化结构。

谢谢大家,我本身不是汽车行业中人,今天给大家探讨一下3D技术和轻量化设计的结合的话题。我大概分成4个部分,第一个部分介绍一下3DSystems新的材料和3D打印设备产品。第二个部分介绍一下3D打印相关的增材设计轻量化的方法。第三个介绍一下3DSystems软硬件解决方案在汽车行业应用以及汽车相关的轻量化应用上能够提供哪些附加价值,最后一个部分我们讲一些增材制造结合轻量化的应用案例,我这边案例主要是在空天和军工领域,希望能给大家有一些互动和启发。

途径1:中空夹层、薄壁加筋结构

首先介绍一下我们公司,我们在1983年全球第一个发明3D打印技术,图片上的利用光固化的技术,对液态实现逐层的固化成型。我们成立于1986年,在1988年销售了第一台商用化的3D技术,通过30年的发展和并购,目前成为在3D行业解决方案最全的一家供应商,我们包含硬件、材料、3D及其上下游的软件,以及覆盖全球按需定制服务的需求网络,我们总部在南卡的RockHill,业务遍布全球,有2500名员工。介绍一下3DSystems公司在2018年有3款新的材料和设备。我们以客户为中心打造以应用价值为生态圈的生态系统,覆盖解决方案不止是3D打印的技术,包括数字化、设计模拟、制造、过程管理等等,整个的3D打印的应用条线。主要提升生产效率,提升零件和制件的耐用性,提升重复精度,降低总体保有成本。

中空夹层、薄壁加筋结构通常是由比较薄的面板与比较厚的芯子组合而成。在弯曲荷载下,面层材料主要承担拉应力和压应力,芯材主要承担剪切应力,也承担部分压应力。夹层结构具有质量轻、弯曲刚度与强度大、抗失稳能力强、耐疲劳、吸音与隔热等优点。

这个是在今年比较重要的一个核心,这是一款模块化的可以扩展的快速的塑料光固化的技术叫Figure4。解决了产能问题,第二个解决单一的3D打印技术不能使用多种材料的问题,第三个是解决3D打印因为单个环节的工艺不是完整的工艺条线,需要复合后道处理,比较高的人工使用成本问题。

在航空、风力发电机叶片、体育运动器材、船舶制造、列车机车等领域,大量使用夹层结构,减轻重量。

大家可以看到3D打印有了这样一种新技术,提升了生产效率,同时降低保有成本之后,才能跨向于大批量生产的市场,3D打印还是局限在定制化、小批量,我们这个目标年产在100万以上的零件,有3D打印快速反映和定制化,多批次,不同材料的特点。面向的是航空航天、汽车、医疗这一块。这一个是可扩展的模块,解决了我刚才讲的几个主要局限3D打印大批量定制应用的技术上的问题。

如果用铝、钛合金做蒙皮和芯材,这种夹层结构被称作金属夹层结构,西安铂力特在3D打印过程中,采用夹层结构,实现构件的快速轻量化,经过设计的夹层结构对直接作用外部于蒙皮的拉压载荷具有很好的分散作用,薄壁结构也能对减重做出贡献;夹层及类似结构可用作散热器,在零件上应用,极大地提高零件的热交换面积,提高散热效率。

第二个部分是我们在高分子材料有一些新的材料比较适合于汽车和其他工业机械行业里的应用。高分子尼龙是唯一能够实现真正热塑性材料3D打印的技术,我们通过10多年的研发已经拥有很多新材料,今年的新品主要有铝粉填充材料,还有黑色的尼龙11的材料、航空阻燃材料。

途径2:镂空点阵结构

航空阻燃材料主要在航空航天、交通运输等地方应用,可以降低以前旧材料的生产成本以及提升它的后处理的工艺性,主要用在商用飞机的内饰这一块。铝粉填充可以提升质感有金属质感可以做硬度的测试,以及生产家具。尼龙11材料比普通的尼龙材料韧性更好,研发成纯黑色主要因为在这个方面的应用主要是在汽车的发动机附近的硬件,要求零件颜色是纯黑的。

镂空点阵结构可以达到工程强度、韧性、耐久性、静力学、动力学性能以及制造费用的完美平衡。通过大量周期性复制单个胞元进行设计制造,通过调整点阵的相对密度、胞元的形状、尺寸、材料以及加载速率多种途径,来调节结构的强度、韧性等力学性能。

第三款新品主要是大型的金属机的产品,这个是今年推出的Factory500,可以在三个轴上做到500毫米以上的铺粉式打印机,这个在金属成形领域不算大,但是在3D打印应用比较大的。对于工业器械的客户来讲,保有价值非常高,中间的打印模块可以快速的取出,提升用户主机设备的翻转使用效率,降低保有成本。同样也是提升大件的成形以及比较大批量的零件的成型,目前我们在欧洲做的主要的测试面向的是航天以及医疗的严苛零部件的批量化生产。这个是金属打印未来工厂的概念图。

三维镂空结构具有高度的空间对称性,可将外部载荷均匀分解,在实现减重的同时保证承载能力。除了工程学方面的需求,镂空点阵结构间具有空间孔隙,在植入物的应用方面,可以便于人体肌体与植入体的组织融合。

第二个部分给大家介绍一下可以和3D打印相关的轻量化设计的方法,主要其实就是两个。从轻量化思路来讲,它是一个三维的建模理论结合3D打印本身的材料成型的一些技术特征,贯彻结构优化,轻量化,得到减重的效果,节省3D打印的材料,提升3D打印成型效率,我们这里讲的是以金属成型为主的。轻量化优化设计本身可以规避掉一部分3D打印过程当中成型工艺过程当中的风险,可以降低对增材制造工艺的要求,随着增材制造技术的发展,这个已经应用的越来越广泛。

镂空点阵单元设计有很高的的灵活性,根据使用的环境,可以设计具有不同形状、尺寸、孔隙率的点阵单元。西安铂力特在这方面做了不断的尝试:在构件强度要求高的区域,将点阵单元密度调整的大一些,并选择结构强度高的镂空点阵单元;在构件减重需求高的区域,添加轻量化幅度大的镂空点阵结构,镂空结构不仅可以规则排列,也可以随机分布以便形成不规则的孔隙。另外,镂空结构还可以呈现变密度、厚度的梯度过渡排列,以适应构件整体的梯度强度要求。

我们讲一下拓扑优化,把宏观的寻求最优拓扑问题转化为给定的设计区域寻求最优材料的分布问题。拓扑优化主要有两种思路-进化法和退化法,下面的两页分别介绍了两种思路中对应的两个典型方法,一个是进化法当中的渐进结构优化,第二个是退化法的均匀化。退化法一种均匀化的方法是在设计区域内构造周期性分布的微结构,这些微结构是同一种各向同性材料实体和孔洞复合而成。渐进结构法是通过把无效和低效结构的裁剪,是现在数学规划过程当中避免多变量求解的过程。

3D科学谷发现,有趣的是我们很多关注点放在点阵结构如何实现我们需要的强度和灵活性,一些极为小众的研究还包括如何获得需要的脆弱性。之前,英国轻量化项目联盟就在研究如何压破点阵结构。其应用场景是返航太空舱在进入地球空气层时候,压力和速度的变化对舱体的力学结构带来很大挑战。通过增材制造Ti-6AI-4V的点阵结构获得0.4k/cm3的超轻密度,这样的结构需要设计成在某种压力下会被压破。3D打印为镂空点阵单元在力学方面的性能实现打开了一个新领域。

晶格和拓扑有点不同,晶格应用于航空航天、医疗的主要手段,未来在汽车行业会不会有这样应用的前景,晶格具有以上几个技术优势,在轻量化同时有高强高钢的特性,有抗冲击的能力,在空间应用上有电磁屏蔽的功能。晶格设计比较简单,用一个点阵的结构代替一个实体结构。

途径3:一体化结构实现

第三个部分给大家讲一下3DSystems实现轻量化设计的3D打印。3DSystems公司拥有全球最全的3D打印的技术包括彩色粉末打印,蜡型打印,光固化树脂打印,尼龙、金属等等不同材料,我们又是一个复合软硬件方案提供商,我们有自己开发的3D打印的软件,包括3DSprint和3DXpert。我们有几个比较大的有名的品牌,一个叫Geomagic是三维扫描和检测行业非常重要的一个软件,旗下有很多产品。另外一个是以色列的一款叫CimatronCAD和CAM的软件,这个也是3DSystems旗下的产品,Gibbscam是车铣复合的软件。

3D打印可以将原本通过多个构件组合的零件进行一体化打印,这样不仅实现了零件的整体化结构,避免了原始多个零件组合时存在的连接结构,也可以帮助设计者突破束缚实现功能最优化设计。

3D打印从运型成型到生产随着技术应用越来越深化,可以实现应用价值的转移,传输的附加值相信对增材技术了解的同仁应该有一个概念,一定要利用3D打印的特点,包括轻量化、一体化、复杂结构、快速反应等等,实现大规模定制,零库存,缩短上市时间等等。

一体化结构的实现除了带来轻量化的优势,减少组装的需求也为企业提升生产效益打开了可行性空间。这方面典型的案例是GE通过长达10多年的探索将其喷油嘴的设计通过不断的优化、测试、再优化,将喷油嘴的零件数量从20多个减少到一个。通过3D打印将结构实现一体化,不仅改善了喷油嘴容易过热和积碳的问题,还将喷油嘴的使用寿命提高了5倍,并且将提高LEAP发动机的性能。

3DSystems既有的解决方案里面有哪些应用,一个是缩短上市周期,第二个是利用轻型零件实现燃油经济性,第三个是按需生产现有或者过时的零部件,这个是软硬件结合的解决方案。第一个部分是缩短产品推向市场的时间,这是一个利用全透明的光敏树脂做的车头灯的原形。这个是利用大尺寸的一米多以上的光敏树脂做的汽车仪表板全尺寸1比1的展示模型。非直接制造这是在F1莲花车队的变速箱铸造,用3D打印制作的铸造原型,最终获得金属的零部件。这个是在美国硬地赛车,在不同的分战比赛当中要求快速,在两周之内对减速传动轮做了一个改进设计,利用3D金属打印生产部件直接装车,上比赛。我们在光敏树脂材料里面填充陶瓷硅化物,提升刚性和耐温性,这个材料因为有比较好的结构稳定性和耐温性,比较适合利用在空气动力学测试的原形还有就是大家看到一个焊接生产线非常复杂的管路安装固定蓝色部分是用3D打印做出来的,主要是因为它在树脂材料里面有高精度,又有极高的结构稳定性和耐温的性能。

途径4:异形拓扑优化结构

我们还是通过一体化实现的,因为必须3D打印附加优势必须要结合一体设计。生产改造和零部件这一块一个是利用软件三维扫描去做一些过时零件的复原,老爷车,还有航天的零件,还有数字化技术没有成熟的时候设计出来的零件,逆向工程结合3D打印复制出来。还有就是改变一些特殊的模具的生产,这个是我们做的比较成熟的在汽车相当于是汽车零部件上一个轮胎,主要是轮胎,是做槽纹拼接模具和插片。这是比较适合3D打印有附加价值的应用条线。这个也是一个利用软件和硬件复合在短期内做一个会展上的定制车辆。在软件这一块我给大家以金属打印软件做晶格优化为范式,首先这个软件是全球在3D打印领域唯一一个直接使用CAD为基础数据环境。它一次性涵盖了数据导入,CAD的优化,晶格或者拓扑填充做工艺的设计,激光加工的策略优化。在晶格软件这一块通过V-rep的技术快速的创建以及结合可视化的交互操作,同时因为在3DXpert中CAD的原始基础数据环境当中实现,和历史参数化的数据实现无缝的结合,解决了在网格化的近似数据进行优化。我们有很多种不同的晶格类型,有表面的,有壳面厚度,用户可以自定义每个节点可以从CAE里面导入。下面这一段视频看一看能不能播放。这个是利用金属打印软件晶格的优化功能直接进行优化,和第三方软件实现的晶格的区别是工艺上是比较复杂的技术,必须在内嵌的软件做一个优化,避免反复的数据转换影响工艺工程师对成型整体过程的管控。同时我们自己优化了晶格优化背后的引擎的算法,使得这样一个非常多曲面的结构能够在这个软件里面使用过程当中不会出现特别的卡顿,因为它是CAD的基础数据环境,可以在不同的点线面体的特征上点选不同的晶格和变化趋势。

拓扑优化是缩短增材制造设计过程的重要手段,通过拓扑优化来确定和去除那些不影响零件刚性的部位的材料。拓扑方法确定在一个确定的设计领域内最佳的材料分布:包括边界条件、预张力,以及负载等目标。

这个是它的一些应用,在医疗方面为什么要用这种多种晶格符合呢?在医疗上有一个模量调整的过程,因为植入有一个应力屏蔽的要求,所以需要在一个人体植入上设计出不同的晶格调整模量。在航空航天上也是一个应用。

拓扑优化对原始零件进行了材料的再分配,往往能实现基于减重要求的功能最优化。拓扑优化后的异形结构经过仿真分析完成最终的建模,这些设计往往无法通过传统加工方式加工,而通过3D打印则可以实现。通常3D打印出来的产品与传统工艺制造出来的零件还需要组装在一起,所以设计的同时还需要考虑两种零件结合部位的设计。

最后给大家介绍几个空天和军工上的3D打印结合轻量化应用的案例。这个案例是航空的格栅铰链,航空航天的应用上来讲,钛和高温合金是比较难以减材加工的材料,很多材料难于做传统加工,3D打印有它在材料成型上的优势。从案例上来看第一个是法国ThalesAlenia给韩国Koreasat做的支架的设计。同样T在去年上半年也在东南亚也有一个项目,也是利用3D打印做了卫星天线支架。核心概念是减少重量,保持强度比。法国叫Sogaclair的公司也是拓扑优化,大的金属零部件不是直接3D打印出来,是通过粘合的技术打了一个砂型,也是通过仿生优化的设计方式再通过3D打印的方式生产出来,这个是自然杂志在去年记载了丹麦理工大学的项目,在27米的机遇切成11亿个单位进行分解得到减重的结果。这个项目验证了利用晶格填充结合拓扑优化,把拓扑和晶格两种轻量化的方法结合在上面,验证冲击载荷环境下它的性能。最后一页是晶格的一些应用,主要在流体力学、航空上、发动机、钢铁上的案例,我给大家的介绍内容就是这些,谢谢大家。

3D科学谷介绍的以上四种3D打印结构是实现机械轻量化的其中一个方向,实现机械轻量化是一个系统的工程,从每一个关键零部件的设计优化、制造,到轻量化材料的研发与应用都是轻量化探索道路上不可或缺的。

关键词:3D打印轻量化

本文由企业印刷发布,转载请注明来源:3D打印实现轻量化的四种途径